APPLICATION OF DERIVATIVES 211

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3b\cos^2 t\sin t}{3a\sin^2 t\cos t} = \frac{-b}{a}\frac{\cos t}{\sin t}$$

Therefore, slope of the tangent at $t = \frac{\pi}{2}$ is

or

$$\left[\frac{dy}{dx}\right]_{t=\frac{\pi}{2}} = \frac{-b\cos\frac{\pi}{2}}{a\sin\frac{\pi}{2}} = 0$$

Also, when $t = \frac{\pi}{2}$, x = a and y = 0. Hence, the equation of tangent to the given

curve at $t = \frac{\pi}{2}$, i.e., at (a, 0) is

$$y - 0 = 0(x - a)$$
, i.e., $y = 0$.

- 1. Find the slope of the tangent to the curve $y = 3x^4 4x$ at x = 4.
- 2. Find the slope of the tangent to the curve $y = \frac{x-1}{x-2}$, $x \neq 2$ at x = 10.
- 3. Find the slope of the tangent to curve $y = x^3 x + 1$ at the point whose *x*-coordinate is 2.
- 4. Find the slope of the tangent to the curve $y = x^3 3x + 2$ at the point whose *x*-coordinate is 3.
- 5. Find the slope of the normal to the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$ at $\theta = \frac{\pi}{4}$.
- 6. Find the slope of the normal to the curve $x = 1 a\sin\theta$, $y = b\cos^2\theta$ at $\theta = \frac{\pi}{2}$.
- 7. Find points at which the tangent to the curve $y = x^3 3x^2 9x + 7$ is parallel to the *x*-axis.
- 8. Find a point on the curve $y = (x 2)^2$ at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).

212 MATHEMATICS

- 9. Find the point on the curve $y = x^3 11x + 5$ at which the tangent is y = x 11.
- 10. Find the equation of all lines having slope -1 that are tangents to the curve

$$y = \frac{1}{x - 1}, x \neq 1.$$

11. Find the equation of all lines having slope 2 which are tangents to the curve

$$y = \frac{1}{x-3}, x \neq 3.$$

12. Find the equations of all lines having slope 0 which are tangent to the curve $v = \frac{1}{1}$.

$$y = \frac{1}{x^2 - 2x + 3}$$

(i)

13. Find points on the curve
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 at which the tangents are

- 14. Find the equations of the tangent and normal to the given curves at the indicated points:
 - (i) $y = x^4 6x^3 + 13x^2 10x + 5$ at (0, 5) (ii) $y = x^4 - 6x^3 + 13x^2 - 10x + 5$ at (1, 3) (iii) $y = x^3$ at (1, 1) (iv) $y = x^2$ at (0, 0) (v) $x = \cos t, y = \sin t$ at $t = \frac{\pi}{4}$
- 15. Find the equation of the tangent line to the curve $y = x^2 2x + 7$ which is
 - (a) parallel to the line 2x y + 9 = 0
 - (b) perpendicular to the line 5y 15x = 13.
- 16. Show that the tangents to the curve $y = 7x^3 + 11$ at the points where x = 2 and x = -2 are parallel.
- 17. Find the points on the curve $y = x^3$ at which the slope of the tangent is equal to the *y*-coordinate of the point.
- 18. For the curve $y = 4x^3 2x^5$, find all the points at which the tangent passes through the origin.
- 19. Find the points on the curve $x^2 + y^2 2x 3 = 0$ at which the tangents are parallel to the *x*-axis.
- 20. Find the equation of the normal at the point (am^2, am^3) for the curve $ay^2 = x^3$.

 $Q (x + \Delta x, y + \Delta y) - S (x + dx, y + dy)$

 $dx = \Delta x$

 Δy

- 21. Find the equation of the normals to the curve $y = x^3 + 2x + 6$ which are parallel to the line x + 14y + 4 = 0.
- 22. Find the equations of the tangent and normal to the parabola $y^2 = 4ax$ at the point $(at^2, 2at)$.
- **23.** Prove that the curves $x = y^2$ and xy = k cut at right angles* if $8k^2 = 1$.
- 24. Find the equations of the tangent and normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the

point (x_0, y_0) .

25. Find the equation of the tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line 4x - 2y + 5 = 0.

Choose the correct answer in Exercises 26 and 27.

- **26.** The slope of the normal to the curve $y = 2x^2 + 3 \sin x$ at x = 0 is
 - (A) 3 (B) $\frac{1}{3}$ (C) -3 (D) $-\frac{1}{3}$

27. The line y = x + 1 is a tangent to the curve $y^2 = 4x$ at the point (A) (1,2) (B) (2,1) (C) (1,-2) (D) (-1,2)

6.5 Approximations

In this section, we will use differentials to approximate values of certain quantities.

Let $f: D \to \mathbf{R}$, $D \subset \mathbf{R}$, be a given function and let y = f(x). Let Δx denote a small increment in x. Recall that the increment in ycorresponding to the increment in x, denoted by Δy , is given by $\Delta y = f(x + \Delta x) - f(x)$. We define the following

- (i) The differential of *x*, denoted by dx, is defined by $dx = \Delta x$.
- (ii) The differential of y, denoted by dy, $X' \leftarrow 0$ is defined by dy = f'(x) dx or Y' $dy = \left(\frac{dy}{dx}\right)\Delta x$. Fig 6.8

* Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.